Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Database
Language
Document Type
Year range
1.
Heliyon ; 8(7): e09887, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-2004105

ABSTRACT

Galahad™ is a proanthocyanidin complexed with polysaccharides that inactivates viruses and indicates potential for an innovative approach to making protective vaccines. The polysaccharide portion of Galahad™ consists mainly of arabinan and arabinogalactan. In a seven-day toxicity study in rats, it was not toxic even when tested undiluted. Galahad™ inactivated a wide range of DNA and RNA viruses including adenoviruses, corona viruses such as SARS-CoV-2, and influenza viruses. Electron microscopy studies showed that exposure to Galahad™ caused extensive clumping of virions followed by lack of detection of virions after longer periods of exposure. Based on the viral inactivation data, the hypotheses tested is that Galahad™ inactivation of virus can be used to formulate a protective inactivated virus vaccine. To evaluate this hypothesis, infectious influenza A virus (H5N1, Duck/MN/1525/81) with a titer of 105.7 CCID50/0.1 ml was exposed for 10 min to Galahad™. This treatment caused the infectious virus titer to be reduced to below detectable limits. The Galahad™ -inactivated influenza preparation without adjuvant or preservative was given to BALB/c mice using a variety of routes of administration and dosing regimens. The most protective route of administration and dosing regimen was when mice were given the vaccine twice intranasally, the second dose coming 14 days after the primary vaccine dose. All the mice receiving this vaccine regimen survived the virus challenge while only 20% of the mice receiving placebo survived. This suggests that a Galahad™-inactivated influenza virus vaccine can elicit a protective immune response even without the use of an adjuvant. This technology should be investigated further for its potential to make effective human vaccines.

2.
ACS Cent Sci ; 8(3): 351-360, 2022 Mar 23.
Article in English | MEDLINE | ID: covidwho-1764121

ABSTRACT

Mucins are a diverse and heterogeneous family of glycoproteins that comprise the bulk of mucus and the epithelial glycocalyx. Mucins are intimately involved in viral transmission. Mucin and virus laden particles can be expelled from the mouth and nose to later infect others. Viruses must also penetrate the mucus layer before cell entry and replication. The role of mucins and their molecular structure have not been well-characterized in coronavirus transmission studies. Laboratory studies predicting high rates of fomite transmission have not translated to real-world infections, and mucins may be one culprit. Here, we probed both surface and direct contact transmission scenarios for their dependence on mucins and their structure. We utilized disease-causing, bovine-derived, human coronavirus OC43. We found that bovine mucins could inhibit the infection of live cells in a concentration- and glycan-dependent manner. The effects were observed in both mock fomite and direct contact transmission experiments and were not dependent upon surface material or time-on-surface. However, the effects were abrogated by removal of the glycans or in a cross-species infection scenario where bovine mucin could not inhibit the infection of a murine coronavirus. Together, our data indicate that the mucin molecular structure plays a complex and important role in host defense.

4.
Sci Rep ; 10(1): 21877, 2020 12 14.
Article in English | MEDLINE | ID: covidwho-977273

ABSTRACT

SARS-CoV-2 virus is the causative agent of COVID-19. Here we demonstrate that non-infectious SARS-CoV-2 virus like particles (VLPs) can be assembled by co-expressing the viral proteins S, M and E in mammalian cells. The assembled SARS-CoV-2 VLPs possess S protein spikes on particle exterior, making them ideal for vaccine development. The particles range in shape from spherical to elongated with a characteristic size of 129 ± 32 nm. We further show that SARS-CoV-2 VLPs dried in ambient conditions can retain their structural integrity upon repeated scans with Atomic Force Microscopy up to a peak force of 1 nN.


Subject(s)
COVID-19/virology , SARS-CoV-2/physiology , Virion/metabolism , Virus Assembly , HEK293 Cells , Humans , Spike Glycoprotein, Coronavirus/metabolism , Viral Matrix Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL